
 

 

 
Striploin camera 
upgrade 
LEAP4Beef-Module L4B01 Project 2 – Striploin 
chining pre-production cell accuracy improvements 

Project code 
2025-1045 

Prepared by 
Vaughan Weatherall & Steve 
Maunsell 

Date submitted 
10/06/25 

 Published by 
AMPC 

Date published 
10/06/25 

  



 

Disclaimer The information contained within this publication has been prepared by a third party commissioned by Australian Meat Processor Corporation 
Ltd (AMPC). It does not necessarily reflect the opinion or position of AMPC.  Care is taken to ensure the accuracy of the information  
contained in this publication. However, AMPC cannot accept responsibility for the accuracy or completeness of the information or opinions contained in this 
publication, nor does it endorse or adopt the information contained in this report. 

No part of this work may be reproduced, copied, published, communicated or adapted in any form or by any means (electronic or otherwise) without the 
express written permission of Australian Meat Processor Corporation Ltd. All rights are expressly reserved. Requests for further authorisation should be 
directed to the Executive Chairman, AMPC, Suite 2, Level 6, 99 Walker Street North Sydney NSW. 

 

AMPC.COM.AU 2 

1 Abstract 3 

2 Executive summary 3 

3 Introduction 6 

4 Project objectives 6 

5 Methodology 7 

5.1 Background 7 

5.2 Understand the past work and generate upgrade strategies 13 

5.3 Develop upgrade design 13 

5.4 Yield measurement. 13 

5.5 Propose commercial machine to establish an estimation of capital cost. 14 

6 Results 14 

6.1 Understand the past work and generate upgrade strategies 14 

6.2 Develop upgrade design 14 

6.3 Boning room, trials and associated feedback measurements 18 

7 Discussion 23 

8 Conclusions 25 

9 Recommendations 26 

10 Project outputs 27 

11 Bibliography 27 

12 Appendices 27 

  



 

AMPC.COM.AU 3 

1 Abstract  
This project has focused on improving the accuracy of the striploin chine removal cell. The improvements 
include: 

 The camera quality and geometry has improved. 

 A camera pair has been added to capture the side of the product. 

 An automated camera calibration mechanism has been developed with an associated robotic end-

effector.  

 A feedback mechanism has been created to create a dataset for CNN training. 

 The robot path has added flexibility to allow curved paths. 

These changes were implemented at the installed machine at the trial site. 714 striploin products were put 
through the machine to test these changes and generate data to train a CNN to generate cut co-ordinates 
for the robot bandsaw.  

These changes significantly improved the accuracy of the machine from (Maunsell & McCrorie, 2024) and 
simplifies data collection to enable further improvement.  

The development now indicates a minor yield improvement, relative to the manual operators. A concept 
has been proposed for a standalone machine with the capacity to remove two bandsaw operators and 
add one loader per shift. The adoption of the machine, including yield improvement and labour saving 
provides an estimated 2.3 year payback.  

It is proposed that the development of a prototype machine is justified.  

The development of a standalone beef chining machine would provide significant benefits to the 
Australian beef processing industry. 

2 Executive summary 
Purpose of the research 

There is an opportunity to automate the removal of the chine bone from the beef striploin, targeting yield 
improvement, labour saving and improved operator safety.  

This project has focused on improving the accuracy of the striploin chine removal cell installed in previous 
project (Maunsell, 2024).  

 

Target Audience 

The main target audience is the Australasian beef processing industry 

 

Benefit of the results 
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The results of the research will form a business case for proposing a prototype machine development 
project. With the desired outcome being the development of a prototype which will contribute value, by 
way of yield, labour saving and improved safety, to the Australasian beef industry. 

 

The objectives and delivery of the project were: 

• To enhance the sensing of the L4B01 Module – Striploin Chine Bone Removal concept prototype 

cell currently installed at an Australian processor to predict the curvature of the vertebrae 

• Assess improvement in cut accuracy and hence measure if this produces a sufficient improvement 

in yield. 

• Provide the steering group including Scott with the information required to develop a “final” module 

design that will result in a pre-commercial machine build offer being made to an Australian 

processor. 

Where the accuracy was enhanced from the previous project (Maunsell, 2024) and minor improvement 
relative to the manual process was determined. A concept has been proposed such that cycle rate, capital 
cost and associated payback has been estimated. 

 

Methodology employed 

The background was largely researched from the previous project (Maunsell, 2024). Particularly the 
performance metrics and evaluation method.  

The key metric is the error distance of the resultant chine cut from the ideal cut surface.  

The yield benefit can be estimated using a weight per mm of error model.  

 

Results/key findings 

The project has implemented additional sensing means, both enhanced the resolution of the end view. 

The quantity of meat retained on the product (“yield”) is determined from the mean error. Where the 
smaller error determines in increase in yield. 

The performance of the strategy is a trade off between minimising the mean error from the ideal cut 
surface and the percentage of production that is in the “No Go” region. Where the “No Go” region is 
defined by each boning room. For this project the “No Go” region is defined at -2mm from the ideal cut 
surface. At -2mm the “bone bridges” adjacent to the button bones are readily broken, without the need for 
hammering. 

To enable valid comparison, the mean for each strategy is adjusted to constrain the two standard 
deviations value at the “No Go” region. 

For this project it is assumed that 0-rib and 2-rib short loins are produced in approximately equal numbers 
and therefore the strategy can be evaluated by considering the average of the performance metrics. 



 

AMPC.COM.AU 5 

With these assumptions, referring to Table 1, it can be stated that the strategy in (Maunsell & McCrorie, 
2024) resulted in a meat per head loss of 219g and the strategy in this project resulted in a gain of 58g, 
relative to the data collected on the manual process.  

In project (Maunsell & McCrorie, 2024) and limited trials performed in (Kennedy, Maunsell, & Brennan, 
2019) the accuracy of the CT scanner and robotic bandsaw approach was also estimated as per Table 1. 

 

It can be stated that the key parameter to enable tuning the mean error setting and associated yield 
improvement is the reduction of standard deviation. 

A significant advantage of the auto system is that the mean position of the cut depth can be tuned to, on 
balance, give the most preferred results. 

During the CNN tuning it has been noted that there was minor improvement in the output as more data 
was added. However, given the nature of the CNN approach, it cannot be estimated as to high much 
improvement will occur when production volumes are available to tune with. 

If it can be assumed that 0 and 2 rib shortloins are processed in equal numbers, the determined 
improvement in the error measurement is 1mm towards the spine. 

The yield improvement can be estimated, using 28.88g/mm and $25/kg (Maunsell & McCrorie, 2024) at 
$0.72 per side, or $1.44 per head. 

Given the variation in processing rates across the Australian industry, an example case has been 
established and the payback calculations provided. 

For the example case of 300,000 head processed per year, the forecast payback is 2.3 years. 

According to (Maunsell, Kennedy, & Dickie, 2018), nine beef processing sites in Australia have annual 
production volumes exceeding the 300,000-unit benchmark. These sites are expected to achieve a better 
payback than the example case. Notably, two sites exceed this volume by more than double, indicating 
that even two machines at these locations would outperform the example case in terms of payback. 

 

There is an opportunity, depending on layout and available cycle time, to incorporate the loading of the 
short loin into a standalone machine with an upstream process, such as the tenderloin removal. This 
“upside” has not been included in the payback calculation. 

It can also be expected that when a prototype machine is in production, further refinement of the vision 
analysis, particularly the CNN training, would improve the standard deviation of the cut error. 

It is recommended that the current test rig, with the upgraded cameras, is further operated to increase the 
trialled sample size and obtain more extensive feedback from the trial site boning room. Further trials will 
increase the accuracy of establishing the processor motivation to purchase a machine utilising the 
developed process.  

It is recommended that the development of a manually loaded, standalone machine is viable and would 
provide significant benefit to the Australasian beef processor industry. 
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Benefits to industry 

The results of the research will form a business case for proposing a prototype machine development 
project. With the desired outcome being the development of a prototype which will contribute value, by 
way of yield, labour saving and improved safety, to the Australasian beef industry. 

 

Future research/extension/adoption and recommendations 

It is recommended that the current test rig, with the upgraded cameras, is further operated to increase the 
trialled sample size and obtain more extensive feedback from the trial site boning room.  

It is recommended that the development of a manually loaded, standalone machine is viable and would 
provide significant benefit to the Australasian beef processor industry. 

It is recommended that a concept be further developed and a project proposal put forward. 

 

3 Introduction 
There is an opportunity to automate the removal of the chine bone from the beef striploin, targeting yield 
improvement, labour saving and improved operator safety.  

This project has focused on improving the accuracy of the striploin chine removal cell installed in previous 
project (Maunsell, 2024).  

 

The main question was to determine whether the striploin chine cut path, being driven of skeleton 
features, can be established from the exterior surfaces. And given the achievable accuracy for the 
required capital cost, is it possible to develop a viable machine. 

 

The main target audience is the Australasian beef processing industry 

The results of the research will form a business case for proposing a prototype machine development 
project. With the desired outcome being the development of a prototype which will contribute value, by 
way of yield, labour saving and improved safety, to the Australasian beef industry. 

 

4 Project objectives 
 

• To enhance the sensing of the L4B01 Module – Striploin Chine Bone Removal concept prototype 

cell currently installed at an Australian processor to predict the curvature of the vertebrae 
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• Assess improvement in cut accuracy and hence measure if this produces a sufficient improvement 

in yield. 

• Provide the steering group including Scott with the information required to develop a “final” module 

design that will result in a pre-commercial machine build offer being made to an Australian 

processor. 

5 Methodology 

5.1 Background 
In previous project the automation of the beef process has been broken up into the modules shown in 
Figure 1. 

 
Figure 1: Automation of beef process modules 

Where this project and its predecessor (Maunsell, 2024), is identified as CHINED CUTS, LOIN. (Marked 
in green) 

The modules are: 

• Leap 4 Beef Module 01 Striploin chine bone removal (Current project) 
• Leap 4 Beef Module 02 Cube roll chine bone removal 

• Leap 4 Beef Module 03 FQ Cuts processing (less banjo) 
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• Leap 4 Beef Module 04 HQ Leg bone removal from meat 

• Leap 4 Beef Module 05 FQ Leg bone removal from meat 

• Leap 4 Beef Module 06 Chuck chine removal 

To assess the viability of a module it is necessary to understand 

• the items produced 

• the specifications that govern production of the produced items 

• the production methods that are followed 

• the value of produced items 

• the possible benefits of automation in terms of labour requirements, yield and value 

 

The key knowledge gap identified is as to whether measurement of the external surfaces of a beef short 
loin with an analysis system can be used to determine a chining cut path with beneficial accuracy. 

To close this knowledge gap, the previous project, (Maunsell, 2024), was executed.  

Project (Maunsell, 2024) developed a robotic chining test rig with vision and computing systems. 

The test rig included (Figure 2): 

• A developed clamp for securely hold the short loin spine, along the length of the product while 

leaving the working zone clear for the bandsaw. 

• A bandsaw mounted on a robot where the path was able to be adapted from vision capture and 

analysis system. Where the vision system was two cameras viewing both ends of the short loin.  
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• Numerous trials were performed enabling measurement, training, development and final 

performance measurement for reporting. 

 

Figure 2: (Maunsell, 2024) Robotic Chining Cell 

5.1.1 The key metric for performance determination 
The key metric for performance determination is a measurement from the cut plane to the “ideal” cut 
surface. This measurement is the error. The “ideal” cut surface is that surface where there is “zero” bridge 
(no meat and no bone) between buttons. 

 

With this error metric, yield loss can be reasonably estimated. E.g. if you have 2mm valleys all the way 
across, you can multiply by a cut face area and density to determine mass of meat loss from the ideal. 

The metrics recorded in the results table are: 

Short loin ID Number of ribs in short loin 

Button# (For each of 7 buttons) 

Split? Dorsal Depth Ventral 
Depth 

     

 

5.1.1.1 Split metric definition 
The split metric is a discrete measurement of cut quality. Defined in Figure 3 and Table 1 
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Cutline to remove 
chine bone (Ideal at 

 

Chine bone  

Spinous process 
(feather bone) 

Articular process 
(‘button’)  

Transverse 
process 

Cutline to split 
carcass 

Location of button split 
classification relative to 

0mm cut line. 

Figure 3: Split? metric definition 

Table 1: Split metric values definition 
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5.1.1.2 Dorsal and Ventral Depth metric definition (error measurement) 

 

 

Button #1 always 
at cranial end 

Green dots:  

Dorsal tangent point for ideal cut depth 
(measured on cut chine from cut plane) 

Red dots: 

Ventral tangent point for ideal cut path 
(measured on cut chine from cut plane) 

Rib. At cranial end of 
product 

Feather bone 
(Lateral process) 

Transverse 
process 

Figure 4: Striploin skeleton demonstrating the position for 0mm cut on dorsal and ventral 
sides 
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5.1.2 Strategy to realise benefit 
The strategy to realise benefit is predominately from yield improvement. Labour saving is also targeted, 
but yield is the most significant gain and if yield is not improved, the labour-saving benefit is readily 
consumed. 

The target is to achieve a standard deviation in cut accuracy that is less than or equal to the manual 
process. There is a significant product value differential across the cut, premium strip loin versus bone, 
therefore ideally with an improved standard deviation the cut mean position could be moved closer to the 
bone delivering a yield gain. The yield can be calculated from the manual process mean position minus 
the robotic position, multiplied by the nominal cross section, meat density and value per kg. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: From (Maunsell 2024) demonstrating potential yield increases from increasing chining accuracy. Potential yield is 
calculated as $2.82 for a 0-rib product. 
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5.1.3 The results determined in (Maunsell, 2024) were: 
• When aligned normal distribution curves for cut depth error are compared, the automatically cut 

product mean is between 1.0mm to 1.4mm more than the mean of manually cut product at an 
Australian processor. 

• Using the current simple sensing means (cameras at each end), the mean of cut depth error is 5.3mm to 
8.1mm more than the expected results from advanced sensing means (CT scanning). 

5.1.4 The determined benefits to industry were: 
Assuming the next stage development machine can improve on a manual cut product by 1mm for 0-rib 
product and 2mm for 2-rib product, this would result in a yield benefit of: 

• $0.722 AUD per 0-rib striploin* 
• $1.444 AUD per 2-rib striploin* 

Using the above assumed benefits, the value of equipment utilising a 2-year payback would equate to: 
$991,744 AUD** 

5.2 Understand the past work and generate upgrade strategies 
A brief internet search, review of (Maunsell, 2024) and the generation of strategies to provide the ultimate 
opportunity to demonstrate the determination of chine cut surface from external surface data. 

5.3 Develop upgrade design 
The development includes: 

1. Vision hardware 

2. Computer hardware 

3. Image capture software 

4. Image processing 

5. Boning room, trials and associated feedback measurements 

6. Trials and measuring 

5.4 Yield measurement. 
For the boneless short loin, the yield for both robotic and the manual boning process, could be measured 
and compared.  

 

 * This benefit is plant and commercial solution dependant.  
 ** There may be further costs associated with equipment 
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5.5 Propose commercial machine to establish an estimation of capital 
cost. 

In concept form, propose an option for a commercial machine. 

Using experience and comparisons with known machines, estimate a price of the proposal 

 

6 Results  

6.1 Understand the past work and generate upgrade strategies 
In (Maunsell, 2024), the striploin chine machine was shown to work reliably using external sensing, but 
the cutting accuracy was notably worse than existing manual processing. Three main areas were 
determined to be important for improving this. 

 Improving image data provided to CNN using better cameras and optics 

 Improving CNN training and particularly data feedback 

 In larger product, the cut surface tended to be more curved. In (Maunsell, 2024) the manual 

operators were determined to be aiming for the tenderloin attachment point on the striploin. To 

help with this, a side view was added and the robot cut path was modified to account for an 

additional point. 

6.2 Develop upgrade design 

6.2.1 Vision hardware 
To improve vision data, the cameras and lenses were changed. 

This improved sensor triples the total pixel count, with a 2.8x larger area. The longer lens focal length 
increases the usable area of the image. Combined with changing orientation, this increases the product 
area in view from 13% horizontal, 30% vertical the to 30% vertical, 45% horizontal for a large product. 
This further increases the useful information by approximately 3.5 times. 

For this project, a primary goal was to improve the accuracy of the cut path.  

The dataset for training the neural network was determined to be an important factor to improve. In 
(Maunsell, 2024), images and results were collected for a few hundred products. The images were used 
for input for the CNN, but the labelled cut positions from these images were from manual inspection 
instead of using the collected data. Using the measured feedback data is a much more accurate method 
of creating labels for images.  

This information was generated for each product in (Maunsell, 2024). However, this was not set up to 
align these parts to ensure that the data generated matched the correct product. In particular, the 
feedback was written on paper. This required significant work to digitise the data and there was no way to 
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ensure the images and cut positions matched with each other. Some products were analysed multiple 
times, feedback was recorded out of order or excluded from feedback. 

An issue identified during boning room trials during (Maunsell, 2024) was there were sometimes several 
products lined up to be measured. This caused an issue that recorded feedback could be out of order 
compared with the cutting order if two chines were measured out of order. 

To ensure data was easy to record and keep aligned, a data recording application was created. This was 
a web application hosted on the vision computer and accessed with a tablet which recorded the data for 
each product.   

Algorithm 1: Method for recording data 

1. On pressing button to start cut, a unique ID is generated. 

2. After cut, the feedback camera is swung around to take a picture of the cut product. A picture is 

taken by pressing a button on the tablet application. 

3. This adds an item to a queue on the tablet application to record the depths of the meat across the 

cut product. 

4. After recording data on the tablet, it is stored in the directory from the cut product. 

The product ID is recorded in a database that associates a directory of images with the generated robot 
coordinates. The feedback is associated with the most recent analysed images. This method ensures that 
feedback data is digitally recorded and correctly associated with the ID from the same product. 

The data recording application also shows the image taken from the feedback camera. This makes sure 
the cut product can be checked against the image to ensure the product being measured was correct. 
This was rarely necessary during testing. 

Once these values are gathered, this can be used to generate corrected data. For a linear cut, two points 
are used. The positions of buttons are linearly interpolated. For an example of this calculation, a set of cut 
points are (500, 120) to (975, 100). The measured data is from the feedback tablet. Positive values mean 
the cut was too far away from the vertebrae, and vice versa1.  

Position X (caudal-
cranial) (mm) 

Y (towards/away 
from chine) 

Measured error 
(mm) 

Adjusted Y 
(mm) 

Start of cut [robot input 
1] 500.0 120.0 

 115.2 

Button 1 ventral  536.5 118.5 -2 116.5 

Button 1 dorsal 573.1 116.9 -2 114.9 

Button 2 ventral  609.6 115.4 -3 112.4 

Button 2 dorsal 646.2 113.8 -6 107.8 

 
1 The bandsaw is a thin blade held at a constant angle. These Y positions are the position of the blade at Z=0. The Y 
values of the measured positions will be closer to the vertebra because they are located above the conveyor.  
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Button 3 ventral  682.7 112.3 -4 108.3 

Button 3 dorsal 719.2 110.8 -5 105.8 

Button 4 ventral  755.8 109.2 -5 104.2 

Button 4 dorsal 792.3 107.7 -3 104.7 

Button 5 ventral  828.8 106.2 2 108.2 

Button 5 dorsal 865.4 104.6 1 105.6 

Button 6 ventral  901.9 103.1 -3 100.1 

Button 6 dorsal 938.5 101.5 2 103.5 

End of cut [robot input 
2] 975.0 100.0 

 100.0 

Table 2: An example for calculating adjusted positions of button bridges. The Y values are adjusted by the measured error. N.B. 
In the actual system, the measurements are made perpendicular to the cut face. For simplification, these are treated as the error 
in Y instead. 

 
Figure 6: Original button points and points adjusted from feedback with line of best fit. 

This generates a new set of cut co-ordinates (500, 115.2) and (975, 100.0). This feedback mechanism 
means if the original cut was inaccurate, the data provided to the CNN will be corrected to give a better 
cut informed by the feedback. 
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6.2.1.1 Computer hardware 
The upgraded cameras use GMSL connections which are primarily used for vision systems in cars and 
robotics. This is designed for reliable connections up to 15m duplex connections transporting power and 
data. To facilitate these connections, the camera provider sells industrial PCs based on Nvidia Jetson 
which support 4 x ZED One connections. To support 6 ZED One cameras, two of these were used. Nvidia 
Jetson is an ARM based Linux computer. These factors significantly increased the development 
complexity. 

6.2.1.2 Robot path 
To accommodate a curved path, the robot cut code was rewritten to include a curve through the product. 

This presented difficulty due to the conveyor belt being used as an external axis and the complexity of 

ensuring the bandsaw path correctly aligned with the direction of the bandsaw blade.  

6.2.1.3 Calibration 
Converting between camera pixels and robot co-ordinates is dependent on intrinsic and extrinsic 
parameters. The intrinsic parameters are dependent on the camera sensor and the lens used. The 
extrinsic parameters depend on the relative position and orientation of the camera and the robot frames. 
Both are necessary to convert from camera co-ordinates to robot co-ordinates. The intrinsic parameters 
should be nearly identical for cameras with the same sensor and lens. The extrinsic parameters change if 
the camera or robot frame moves. 

These calibration parameters can be derived from a series of camera co-ordinates paired with known 
points in the robot co-ordinate system. To facilitate this, a calibration end-effector was created, shown in 
Figure 7. This creates a target to be found at different robot positions. The process for finding the 
parameters are described in Algorithm 2.  

 
Figure 7: Calibration end-effector in image 
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Algorithm 2: Automated calibration image capture 

Input: Robot positions 

Output: Images with ball end-effector at each position 

1. For each position in a grid: 

a. Robot moves to new position 

b. The robot sends its position in robot co-ordinates and requests an image 

c. The vision PC takes images 

d. The vision PC sends a signal for the robot to proceed to the next position 

 

 

6.3 Boning room, trials and associated feedback measurements 
The CNN transforms a set of images into robot coordinates for a cut path. In (Maunsell, 2024) images 
were taken, and a cut line was manually marked on the images to estimate where to cut the product. This 
produced results in the correct region but was likely to be very limited. To address this, a method of easily 
connecting the measurements for the cut product was developed. In total 714 product were cut and 
results measured. The initial 300 were cut by choosing the cut lines on images, and the remaining 414 
were cut using a CNN trained on the trialled images.  
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Figure 8: Measured error for 0-rib product for ventral and dorsal buttons. The error bars show 1 
standard deviation from the mean. Assuming a normal distribution, 68% of the cut product will fall 
within these lines.  
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Figure 9: Measured error for 2-rib product for ventral and dorsal buttons. The error bars show 1 standard deviation from the 
mean. Assuming a normal distribution, 68% of the cut product will fall within these lines. 
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The last two tables give an overall picture of the results. For 0-rib, compared with the CNN developed for 
(Maunsell, 2024) on 0-rub product, the new CNN improved by an average of 11.9%, with particularly 
strong improvement on the second and final buttons. However, it remained worse than the manually cut 
benchmark by an average of 9.5%. 

The improvement was more pronounced on 2-rib product. This was an average of 3.6% than the manual 
benchmark and was better by an average of 7.8% if cuts requiring a hammer are considered acceptable. 
However, this is heavily skewed by the final button. Excluding the final button lowers this to -13% and -
1%. Another caveat is the number of manual 2-rib product sampled was very low.  

Comparing the 0-rib CNN results and manual benchmark, the CNN typically had similar or lower rates of 
missing the buttons entirely, but much higher rates of cutting too deeply and either requiring a hammer or 
rework. This indicates the cut is biased towards the spine compared with the manual process. 

This is further shown in Figure 8; the CNN mean dorsal depths are very close to zero or slightly negative. 
A cut depth between 0mm to -2mm is the ideal range, but if the mean is -2mm, half of the product will cut 
too deeply into the spine and require a hammer or rework.  

As explained in (Maunsell, 2024), the mean distance can be directly changed with offsets. By adding a 
4mm offset to the cut, the dorsal mean for the first button would increase from -2mm to 2mm. Assuming a 
normal distribution, this would decrease the number of product with more than 2mm bone on the first 
button to approximately 20%. This is a trade-off because this decreases the yield.  

Controlling offsets provides a significant advantage over manual cutting because it allows the operator to 
move the cut closer or further from the spine, determining the balance between yield and rework. This 
means the important factor for comparing with manual cutting is how the data is distributed from the 
mean.  

On 0-rib product, the automated cuts had a similar standard deviation to manually processed striploin on 
the dorsal side, and 0.4mm worse on the ventral side. On 2-rib product, the automated processing was 
significantly better. This has caveats that the sample size was small and the manual standard deviation is 
highly swayed by the first two buttons. Omitting the first two buttons lowers the 2-rib manual standard 
deviations to 4.0 and 4.7 which is still worse than the automated system. 

Overall, this suggests the capability of the automated processing has significantly improved from the trials 
in (Maunsell, 2024), and now has a similar, but slightly worse precision as manual processing in 0-rib 
product, and slightly better for 2-rib product. After tuning offsets to minimise rework, the results should be 
similar. 

 

6.3.1.1 Further at desk, CNN optimisation 
After the boning room trials had been performed, the dataset was further analysed and refined. This 
involved looking through each image to check for irregularities such as image artifacts or incorrect 
marking. 

A CNN to find a function that minimises a value referred to as loss. This depends on the system, but in 
general the loss value should be lower if the network outputs values close to the answer, and higher if the 
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output is further away. The choice of loss function is an important factor in determining what the network 
will converge towards.  

For this machine, the three sides of the product have separate CNNs that each take a single image and 
produce a cut co-ordinate. Since the cameras are in stereo pairs, the results from these are averaged. 
The cut co-ordinates are created from making a line of best fit for minimising the distance to estimated co-
ordinates of the button valleys. By minimising the distance to the ideal cut points, this will make the cut 
more accurate. 

The loss used for this system is the mean square error. This is a common metric with a similar formula to 
the standard deviation. To get a measure of how the amount of data affects the accuracy of the CNN, a 
CNN was trained using different numbers of input points, shown in Figure 10. As the number of data 
points increases, the loss decreases. If the system is close to its maximum accuracy, the CNN loss will 
start to plateau, and the accuracy will no longer increase. On this graph the line is still decreasing at the 
end side of the graph, this implies the accuracy of the system will improve with additional data.  

 

 
Figure 10: Comparison of mean average error and mean square error for different numbers of data points. The error values are 
calculated using the data points that have been taken outside the input data.  

 

6.3.2 Australian processor yield measurement. 
For the boneless short loin, the yield for both robotic and the manual boning process, was not performed 
in this project, but ideally would be monitored by the room in subsequent production.  
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6.3.3 Proposed commercial machine and estimation of capital cost. 
It is proposed that the preferred concept for a commercial machine would cost $1.5M – $2M. 

6.3.4 Determination of yield gains and other benefits for the return on investment calculation 
The error improvement is -1mm for the average of 0 or 2 rib short loins. 

The yield improvement can be estimated, using 28.88g/mm and $25/kg (Maunsell, 2024) at $0.72 per 
side, $1.44 per head. 

For the example case of 300,000 head processed per year, the forecast payback is 2.3 years. 

There is an opportunity, depending on layout and available cycle time, to incorporate the loading of the 
short loin into a standalone machine with an upstream process, such as the tenderloin removal. This 
“upside” has not been included in the payback calculation. 

 

7 Discussion 
The images captured from the new system are of higher resolution that the system in (Maunsell, 2024). 

The number of pixels for the product in view has increased to approximately 1000 x 1300 from 300 x 400. 
This is 11x the information for the product in view. 

An additional pair of cameras have been implemented to give the side view: 

 
Figure 11: Side view cropped from previous image 
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These aspects have improved the overall quality of data produced. 

Having better and greater quantity vision data combined with a more complex robot path has significantly 
increased the accuracy of the CNN system. Using the error metric that has been establish for both 
(Maunsell, 2024) and this report the summary comparison is: 

    
Previous 
manual 

Previous 
auto 

New 
auto 

  Product count 72 218 325 
  Good split 81.9% 60.6% 72.5% 
  Including PBH 90.3% 75.9% 85.1% 
0-rib Mean error 3.1mm 2.5mm 1.0mm 
  Standard deviation 3.9mm 6.2mm 4.1mm 
  Mean absolute error 3.9mm 5.1mm 3.4mm 
  Product count 15 64 115 
  Good split 65.0% 47.1% 61.4% 
  Including PBH 74.2% 63.6% 81.9% 
2-rib Mean error 3.8mm 1.8mm 1.1mm 
  Standard deviation 5.4mm 6.9mm 4.2mm 
  Mean absolute error 5.0mm 6.3mm 3.9mm 

Table 3: Comparison of metrics for cut quality for (Maunsell, 2024) and new tests. The good split percentage is the number of 
splits that are either ‘Y’ or ‘PB’. A separate measure is given to include ‘PBH’ splits. Mean error is the combined dorsal and 
ventral average depth from a 0mm cut including negative values if there is bone left on the chine. Mean absolute error is the 
same measure except leaving bone is also counted as a positive error. The mean error and standard deviation give a distribution 
of where the cut sits relative to a 0mm cut. The absolute error shows the average distance away from a 0mm cut. 

 

For 0-rib: 

The accuracy of buttons that have been correctly split has increased by an average of 12% compared 
with (Maunsell, 2024) and the standard deviation decreased by 34%. This is a significant improvement 
in the main metrics measured. 

Compared with the manual benchmark, the percentage of well split buttons was 9% lower or 5% if 
PBH is included. The standard deviation of the upgraded system was very similar to the manual 
process. 

The automated system cut an average of 2.1mm closer to the chine than the manual process and 
1.5mm closer than the previous CNN. This is especially pronounced at the caudal end. This would 
leave greater yield on the chine but require significant rework due to bone left on the product. Because 
this can be tuned using offsets, this is less important to compare than the standard deviations. 

Including an offset to bias the automated cut away from the chine will increase the percentage of 
buttons that are correctly split. From the model in Section 6.2.1, tuning offsets on the first button was 
projected to increase the split accuracy by 5%. This would raise the accuracy to near the manual 
benchmark. 

For 2-rib: 
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The 2-rib data is a similar picture. The percentage of correctly split product has improved by 14% and 
the standard deviation has decreased by 39% compared with (Maunsell, 2024). This is a significant 
improvement in the main metrics measured. 

Compared with the manual benchmark, there is a caveat that the sample size measured for a 
benchmark was only 15 2-rib product measured. The percentage of well split buttons was 3.5% lower 
but 6.7% more accurate if PBH is included. The standard deviation of the upgraded system was very 
similar to the manual process. 

The automated system cut an average of 2.7mm closer to the chine than the manual process and 
0.7mm closer than the previous CNN. 

Based on these values, the automated system performs similarly or better than the manual 
benchmark taken from (Maunsell, 2024). Based on these results, the automated system should 
produce higher yield and similar accuracy. Without any offset the automated system is comparatively 
biased towards the chine, so more products will require rework. As with 0-rib, tuning offsets should 
further increase accuracy.  

8 Conclusions  
The project has implemented additional sensing means; both enhanced the resolution of the end view 
cameras and added a side view camera. The cameras are implemented as a stereo pair. 

A CNN strategy was implemented.  

The quantity of meat retained on the product (“yield”) is determined from the mean error. Where the 
smaller error determines in increase in yield. 

The performance of the strategy is a trade-off between minimising the mean error from the ideal cut 
surface and the percentage of production that is in the “No Go” region. Where the “No Go” region is 
defined by each boning room. For this project the “No Go” region is defined at -2mm from the ideal cut 
surface. At -2mm the “bone bridges” adjacent to the button bones are readily broken, without the need for 
hammering. 

To enable valid comparison, the mean for each strategy is adjusted to constrain the two standard 
deviations value at the “No Go” region. 

For this project it is assumed that 0-rib and 2-rib short loins are produced in approximately equal numbers 
and therefore the strategy can be evaluated by considering the average of the performance metrics. 

With these assumptions, it can be stated that the strategy in (Maunsell & McCrorie, 2024) resulted in a 
meat per head loss of 219g and the strategy in this project resulted in a gain of 58g, relative to the data 
collected on the manual process.  

In project (Maunsell & McCrorie, 2024) and limited trials performed in (Kennedy, Maunsell, & Brennan, 
2019) the accuracy of the CT scanner and robotic bandsaw approach was also estimated. 

It can be stated that the key parameter to enable tuning the mean error setting and associated yield 
improvement is the reduction of standard deviation. 
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A significant advantage of the auto system is that the mean position of the cut depth can be tuned to, on 
balance, give the most preferred results. 

During the CNN tuning it has been noted that there was minor improvement in the output as more data 
was added. However, given the nature of the CNN approach, it cannot be estimated as to high much 
improvement will occur when production volumes are available to tune with. 

The determined improvement in the error measurement is 1mm towards the spine. 

The yield improvement can be estimated, using 28.88g/mm and $25/kg (Maunsell & McCrorie, 2024) at 
$0.72 per side, or $1.44 per head. 

Given the variation in processing rates across the Australian industry, an example case has been 
established and the payback calculations provided. 

For the example case of 300,000 head processed per year, the forecast payback is 2.3 years. 

According to (Maunsell, Kennedy, & Dickie, 2018), nine beef processing sites in Australia have annual 
production volumes exceeding the 300,000-unit benchmark. These sites are expected to achieve a better 
payback than the example case. Notably, two sites exceed this volume by more than double, indicating 
that even two machines at these locations would outperform the example case in terms of payback. 

There is an opportunity, depending on layout and available cycle time, to incorporate the loading of the 
short loin into a standalone machine with an upstream process, such as the tenderloin removal. This 
“upside” has not been included in the payback calculation. 

It can also be expected that when a prototype machine is in production, further refinement of the vision 
analysis, particularly the CNN training, would improve the standard deviation of the cut error. 

It is recommended that the current test rig, with the upgraded cameras, is further operated to increase the 
trialled sample size and obtain more extensive feedback from the trial site boning room. Further trials will 
increase the accuracy of establishing the processor motivation to purchase a machine utilising the 
developed process.  

It is recommended that the development of a manually loaded, standalone machine is viable and would 
provide significant benefit to the Australasian beef processor industry. 

9 Recommendations 
It is recommended that further work is undertaken to establish market demand for a machine utilising the 
developed process.  

There is an opportunity to process more products through the as developed test rig and formalise 
processor benefit from the Australian processor point of view. 

It is recommended that the development of a manually loaded, standalone machine is viable and would 
provide significant benefit to the Australasian beef processor industry. 

It is recommended that a concept be developed and a project proposal put forward. 
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10 Project outputs 
Outputs (tangible deliverables) delivered during the project include: 
 

• Technical reports for milestone 1, summarising options evaluated, results from trials and 
recommended future paths of research 

• Data has been collected for the various research, alternative solution evaluation and 
experimental activities and analysis performed. Presented in the technical reports in various 
tabular and graphical formats. 

• The upgraded cameras are on the test rig at an Australian processor and the rig can be run 
when required. 
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